23 research outputs found

    A Signal Temporal Logic Motion Planner for Bird Diverter Installation Tasks with Multi-Robot Aerial Systems

    Full text link
    This paper addresses the problem of task assignment and trajectory generation for installing bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner to compute feasible and constrained trajectories, considering payload capacity limitations and recharging constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during installation operations. The effectiveness and validity of the approach are demonstrated through simulations in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario.Comment: 23 pages, 14 figures, journal preprint, accepted for publication to IEEE ACCES

    Communications-Aware Robotics: Challenges and Opportunities

    Full text link
    The use of Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs) has seen significant growth in the research community, industry, and society. Many of these agents are equipped with communication systems that are essential for completing certain tasks successfully. This has led to the emergence of a new interdisciplinary field at the intersection of robotics and communications, which has been further driven by the integration of UAVs into 5G and 6G communication networks. However, one of the main challenges in this research area is how many researchers tend to oversimplify either the robotics or the communications aspects, hindering the full potential of this new interdisciplinary field. In this paper, we present some of the necessary modeling tools for addressing these problems from both a robotics and communications perspective, using the UAV communications relay as an example.Comment: 6 pages, 4 figures, accepted for presentation to the 2023 International Conference on Unmanned Aircraft Systems (ICUAS) at Lazarski University, Warsaw, Polan

    A nonlinear model predictive control strategy for autonomous racing of scale vehicles

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksA Nonlinear Model Predictive Control (NMPC) strategy aimed at controlling a small-scale car model for autonomous racing competitions is presented in this paper. The proposed control strategy is concerned with minimizing the lap time while keeping the vehicle within track boundaries. The optimization problem considers both the vehicle's actuation limits and the lateral and longitudinal forces acting on the car modeled through the Pacejka's magic formula and a simple drivetrain model. Furthermore, the approach allows to safely race on a track populated by static obstacles generating collision-free trajectories and tracking them while enhancing the lap timing performance. Gazebo simulations using the F1/10 simulator showcase the feasibility and validity of the proposed control strategy. The code is released as open-source making it possible to replicate the obtained results.Peer ReviewedPostprint (author's final draft

    MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

    Full text link
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot Systems (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity with respect to changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.Comment: 49 pages, 39 figures, accepted for publication to the Journal of Intelligent & Robotic System

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    A Signal Temporal Logic Motion Planner for Bird Diverter Installation Tasks With Multi-Robot Aerial Systems

    No full text
    This paper addresses the problem of task assignment and trajectory generation for installing bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner to compute feasible and constrained trajectories, considering payload capacity limitations and recharging constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during installation operations. The effectiveness and validity of the approach are demonstrated through simulations in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario

    A Perception-Aware NMPC for Vision-Based Target Tracking and Collision Avoidance with a Multi-Rotor UAV

    Get PDF
    A perception-aware Nonlinear Model Predictive Control (NMPC) strategy aimed at performing vision-based target tracking and collision avoidance with a multi-rotor aerial vehicle is presented in this paper. The proposed control strategy considers both realistic actuation limits at the torque level and visual perception constraints to enforce the visibility coverage of a target while complying with the mission objectives. Furthermore, the approach allows to safely navigate in a workspace area populated by dynamic obstacles with a ballistic motion. The formulation is meant to be generic and set upon a large class of multi-rotor vehicles that covers both coplanar designs like quadrotors as well as fully-actuated platforms with tilted propellers. The feasibility and effectiveness of the control strategy are demonstrated via closed-loop simulations achieved in MATLAB
    corecore